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1 Efficient Error Estimation for Noisy, Sparse Linear Re-
gression

1.1 Recap: introduction to noisy, sparse linear regression

We are investigating sparse linear regression, with the model y = X6* 4+ w € R", where

wq x] 07
w=|:]|€eR", XeR™  X=|:], 6=|:
W, 30;'; 0:

We assume the sparsity condition |S(6*)| < s. Given (y, X), our task is to estimate 6*. We
had three formulations of the LASSO problem:

1. The X\ formulation:

~ . 1
6 = argin { 1y~ X018 + Al }.
9eRd n

2. 1-norm constrained formulation:

1
ammm{M—XW% st 6], < R
0 2n

3. The error constrained formulation:

. 1
arg min{||0]|1} s.t. THZU — X063 < b*
0 n

Given these three formulations, how can we give a tight upper bound of the estimation
error ||§— 0|27 Last time, in the noiseless setting, we had the restricted nullspace condition
Null(X) N C(S) = {0}, which was sufficient for exact recovery of . In this noisy setting,
we will have the restricted eigenvalue condition, which will be sufficient for efficient
estimation.



1.2 The restricted eigenvalue condition

Recall the C cone
C(S) :={A eR?: |Ages < [As|l1}-

We can modify this by adding a parameter:
Ca(S) == {A €R: [Ase|l1 < af|Asll1}-
In this extended definition, C(S) = C;(.5). If we let @ — 0, we get
Co(S) =A eR?: S(A) =S}
Later we will focus on the C, cone for o« = 3.

Definition 1.1. X € R"*9 gatisfies the restricted eigenvalue condition over S C [d]
with parameter (k,«) (denoted RE(S, (k, @))) if

(A, (;XTX)A) = %HXAH% > wllAl3 YA € Cal(S).
This is called the restricted eigenvalue condition because the condition
(A, (AXTX)A) > kA3 VA eR?
is equivalent to )\min(%XTX) > K.

Here is some intuition. We can think of the RE condition as a sort of strong convexity
for the objective function. Suppose we define the objective function

1
Lo(0) = —|ly — X03,
n(0) = Iy — X[}
which we want to minimize to get a minimizer 0. The Hessian is
1
V2L, (0) = -XTX e R%
n
When the sample size is large, we know that there is concentration:

sup | L (0) — E[L,(0)]] < small,
fcRd

but we want to bound [|§ — 6*[|2. If the Hessian is lower bounded by a large number, then
the objective function will grow very fast around the minimizer. On the other hand, a



weak bound may mean that the objective function grows too slowly around the minimizer.
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Figure 7.5 Illustration of the connection between curvature (strong convexity) of
the cost function, and estimation error. (a) In a favorable setting, the cost func-
tion is sharply curved around its minimizer @, so that a small change 6L, :=
L.0%) - L,,@) in the cost implies that the error vector A = 0 - 6 is not too large.
(b) In an unfavorable setting, the cost is very flat, so that a small cost difference 6.L,
need not imply small error.

1.3 Bounds on /5 error

Our setting is
Y = X6* 4+ w, X e R4 ¢* ¢ RY, w e R”,

where s < n < d. We make two assumptions:
(Al): S(6*) =S C [d], where |S| = s.
(A2): X satisfies RE(S, (k, a0 = 3)).

(A2) is a bit of an abstract condition. Later, we will show that Gaussian random
matrices satisfy (A2) when the sample size n is larger enough than the sparsity level s.

Theorem 1.1. Under assumptions (A1) and (A2),

. . T
(a) X\ formulation: Take the Lagrangian parameter A, > 2||%-%|o. Then

~ 3
0-0°12 < SV,

(b) 1-norm constraint formulation: Take R = ||0*||1. Then

~ 4
16— 0%l < V5

X Tw
no |l




~ . 2 o Jlwl3
(c) Error constraint formulation: Let b > 5 2. Then

T 2

b2
\/E
In all these cases, we have the 1-norm bound
10— 6%l < 4V/5/16 — 0"l

Remark 1.1. This theorem is fully deterministic. There is no probability happening, and
this theorem is entirely due to algebra.

Remark 1.2. The bound % is independent of n.

Remark 1.3. People generally think that the A formulation is best because the bound is
not so sensitive to the choice of the hyperparameter A,. In the second formulation, it is
also difficult to pick R because we do not know what [|0*]; is.

XTw

In all cases, the error bound is /s|| lloo, and it is difficult to know what the typical
size of this is. We make a further assumption: Assume X is deterministic with RE(S, (k, 3))
with max;cq) H\JFHQ < C, where z; € R” is the j-th column of X. Let w ~ sG(o) with
E[w] = 0.

If these assumptions hold, then we claim that

XTw logd
— X < gy ] 28
12| = 5 02
Here, (z;,w)/n ~ sG(oy/1/n). This tells us that
~ slogd
16— 6712 < Sy
- n

So we will have efficient estimation as long as n > (62 V 1)slogd.

1.4 Proof of RE condition bounds

The overall strategy is two steps:

1. Derive a basic inequality (the zero order optimality condition)

2. Algebraic manipulation.



Proof. (b): let’s prove the 1-norm constraint formulation,

~ 1
0 = arg min 2—||y — X|thetal?  s.t.[|0]]1 <||6*||1 = R.
0 n

By the optimality of (9\, we know
1 ~ 1
—ly — X0|3 < —|ly — X60*||3.
—lly - Xl < =y — X0°|

This is the zero order optimality condition. (The first order optimality condition for opti-
mizing f(z) subject to g(x) < 01is Vf(Z) = AVg(Z), where X is a scalar.) Here the right

~

hand side is 5-||wl|3, and the left hand side is 5-||w + X (6* — 0)||3. So we have
[wl3 > [lw+ X (6~ )3
= [[wl3 + 2(w, X (6" — 0)) + || X (6" — )13
Denote A = 6§ — 0*, which is what we want to bound. We can solve this to get
IXA|2 < 2(w, XA).

Thus, our basic inequality is:

1, o~ 2 -
“ | XA < ZwT XA,
n n

If A € Co(S), the left hand side can be lower bounded by
Loy R2 A2
;HXA”Z > k[|All3,

using the restricted eigenvalue condition. To check why A€ Ca(9), note that the condition
6]l < [|6*||; tells us that A € C(S) C Cs(S). ~

The right hand side can be upper bounded by viewing the scalar w' XA as the product
of the vectors w' X and A:

2 ~ 2 ~
“w! XA < =X Twloo - 1
n n
Since A € C(S), we can efficiently bound the 1-norm in terms of the 2-norm:
1Al = 1Asel + [Aslh < 21As]h < 2v5]Bs]l2 < 25 A

Using this in our inequality and dividing by « on both sides gives

XTw
n

~ 4
1A < 28

HOO



Remark 1.4. If instead of bounding by || X T w||eo - Hﬂ\l, we try to bound by || X Tw]|s - Hﬂg,

then we get [|Ally < 211X Tw/n|lz ~ \/g. This is worse than the rate \/@.
The proof of (c) follows the same lines:

Proof. The error-constraint formulation

N ' 1
6 = argmin{||6||1} s.t. Q*H?J - X0|3 < v
0 n

gives (using y — X0=w-— Xﬁ)
{Wmswwh

g llw + XAl < g flwla + (0 — 5 wl)

The algebra proceeds the same as for (b), but we have to keep track of the additive term
2 2 llwl|3
b . O

NG n
The proof of (a) has slightly different reasoning:

Proof. We first show that when A, > QHXTTwHOO, we have A € Cs(S). By optimality, we
have

1 N * N 1 *
%||w+XA\|§ + A |0F +F AL < %kug + X107

This gives us the Lagrangian basic inequality

1 ~ wI XTA . .
SIXAIR < 22 (6t - 16 + Al
We can upper bound the right hand side by
XTw ~ . PN —~
< [A[[ + An(ll0s]1 = 1105 + Aslls = | Ase]l1)
X Tw ~ ~ ~
<[5 180+ ARl - 1Bt
An oo ~
< < BllAsl = [[Ases.

This upper bound must be nonnegative, so
1Asellr < 3[|1As]1,
which means that A € C3(S5). Now, by the RE condition and this bound we have shown,

An

Koo~ ~ ~
S 1415 < Bl Asll = [1Aselh)



An ~
< 5 3Vs[All2.

Canceling a factor of ”AHQ on both sides, we get HAHQ < %\/5 O

Next time, we will show that the RE condition is satisfied with high probability for
Gaussian random matrices.
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