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1 Efficient Error Estimation for Noisy, Sparse Linear Re-
gression

1.1 Recap: introduction to noisy, sparse linear regression

We are investigating sparse linear regression, with the model y = Xθ∗ + w ∈ Rn, where

w =

w1

...
wn

 ∈ Rn, X ∈ Rn×d, X =

x
>
1
...
x>n

 , θ∗ =

θ
∗
1
...
θ∗n

 .
We assume the sparsity condition |S(θ∗)| ≤ s. Given (y,X), our task is to estimate θ∗. We
had three formulations of the LASSO problem:

1. The λ formulation:

θ̂ = arg min
θ∈Rd

{
1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
,

2. 1-norm constrained formulation:

arg min
θ

{
1

2n
‖y −Xθ‖22

}
s.t. ‖θ‖1 ≤ R

3. The error constrained formulation:

arg min
θ
{‖θ‖1} s.t.

1

2n
‖y −Xθ‖22 ≤ b2.

Given these three formulations, how can we give a tight upper bound of the estimation
error ‖θ̂−θ∗‖2? Last time, in the noiseless setting, we had the restricted nullspace condition
Null(X) ∩ C(S) = {0}, which was sufficient for exact recovery of θ∗. In this noisy setting,
we will have the restricted eigenvalue condition, which will be sufficient for efficient
estimation.
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1.2 The restricted eigenvalue condition

Recall the C cone
C(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1}.

We can modify this by adding a parameter:

Cα(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

In this extended definition, C(S) = C1(S). If we let α→ 0, we get

C0(S) = ∆ ∈ Rd : S(∆) = S}.

Later we will focus on the Cα cone for α = 3.

Definition 1.1. X ∈ Rn×d satisfies the restricted eigenvalue condition over S ⊆ [d]
with parameter (κ, α) (denoted RE(S, (κ, α))) if

〈∆, ( 1
nX
>X)∆〉 =

1

n
‖X∆‖22 ≥ κ‖∆‖22 ∀∆ ∈ Cα(S).

This is called the restricted eigenvalue condition because the condition

〈∆, ( 1
nX
>X)∆〉 ≥ κ‖∆‖22 ∀∆ ∈ Rd

is equivalent to λmin( 1
nX
>X) ≥ κ.

Here is some intuition. We can think of the RE condition as a sort of strong convexity
for the objective function. Suppose we define the objective function

Ln(θ) =
1

2n
‖y −Xθ‖22,

which we want to minimize to get a minimizer θ̂. The Hessian is

∇2Ln(θ) =
1

n
X>X ∈ Rd.

When the sample size is large, we know that there is concentration:

sup
θ∈Rd

|Ln(θ)− E[Ln(θ)]| ≤ small,

but we want to bound ‖θ̂− θ∗‖2. If the Hessian is lower bounded by a large number, then
the objective function will grow very fast around the minimizer. On the other hand, a
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weak bound may mean that the objective function grows too slowly around the minimizer.

1.3 Bounds on `2 error

Our setting is
Y = Xθ∗ + w, X ∈ Rn×d, θ∗ ∈ Rd, w ∈ Rn,

where s� n� d. We make two assumptions:

(A1): S(θ∗) = S ⊆ [d], where |S| = s.

(A2): X satisfies RE(S, (κ, α = 3)).

(A2) is a bit of an abstract condition. Later, we will show that Gaussian random
matrices satisfy (A2) when the sample size n is larger enough than the sparsity level s.

Theorem 1.1. Under assumptions (A1) and (A2),

(a) λ formulation: Take the Lagrangian parameter λn ≥ 2‖X>w
n ‖∞. Then

‖θ̂ − θ∗‖2 ≤
3

κ

√
λn

(b) 1-norm constraint formulation: Take R = ‖θ∗‖1. Then

‖θ̂ − θ∗‖2 ≤
4

κ

√
s

∥∥∥∥X>wn
∥∥∥∥
∞
.
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(c) Error constraint formulation: Let b2 ≥ ‖w‖
2
2

2n . Then

‖θ̂ − θ∗‖ ≤ 4

κ

√
s

∥∥∥∥X>wn
∥∥∥∥+

2√
κ

√
b2 − ‖w‖

2
2

2n
.

In all these cases, we have the 1-norm bound

‖θ̂ − θ∗‖1 ≤ 4
√
s‖θ̂ − θ∗‖2.

Remark 1.1. This theorem is fully deterministic. There is no probability happening, and
this theorem is entirely due to algebra.

Remark 1.2. The bound 1
κ is independent of n.

Remark 1.3. People generally think that the λ formulation is best because the bound is
not so sensitive to the choice of the hyperparameter λn. In the second formulation, it is
also difficult to pick R because we do not know what ‖θ̂∗‖1 is.

In all cases, the error bound is
√
s‖X>w

n ‖∞, and it is difficult to know what the typical
size of this is. We make a further assumption: Assume X is deterministic with RE(S, (κ, 3))

with maxj∈[d]
‖xj‖2√

n
≤ C, where xj ∈ Rn is the j-th column of X. Let w ∼ sG(σ) with

E[w] = 0.
If these assumptions hold, then we claim that∥∥∥∥X>wn

∥∥∥∥
∞

= max
i∈[d]
|〈Xj , w〉/n| . σ

√
log d

n
.

Here, 〈xj , w〉/n ∼ sG(σ
√

1/n). This tells us that

‖θ̂ − θ∗‖2 .
√
s

∥∥∥∥X>wn
∥∥∥∥
∞

.

√
s log d

n
.

So we will have efficient estimation as long as n� (σ2 ∨ 1)s log d.

1.4 Proof of RE condition bounds

The overall strategy is two steps:

1. Derive a basic inequality (the zero order optimality condition)

2. Algebraic manipulation.
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Proof. (b): let’s prove the 1-norm constraint formulation,

θ̂ = arg min
θ

1

2n
‖y −X|theta‖22 s.t. ‖θ‖1 ≤ ‖θ∗‖1 = R.

By the optimality of θ̂, we know

1

2n
‖y −Xθ̂‖22 ≤

1

2n
‖y −Xθ∗‖22.

This is the zero order optimality condition. (The first order optimality condition for opti-
mizing f(x) subject to g(x) ≤ 0 is ∇f(x̂) = λ∇g(x̂), where λ is a scalar.) Here the right
hand side is 1

2n‖w‖
2
2, and the left hand side is 1

2n‖w +X(θ∗ − θ̂)‖22. So we have

‖w‖22 ≥ ‖w +X(θ∗ − θ̂)‖22
= ‖w‖22 + 2〈w,X(θ∗ − θ̂)〉+ ‖X(θ∗ − θ̂)‖22

Denote ∆̂ = θ̂ − θ∗, which is what we want to bound. We can solve this to get

‖X∆̂‖22 ≤ 2〈w,X∆̂〉.

Thus, our basic inequality is:
1

n
‖X∆̂‖22 ≤

2

n
w>X∆̂.

If ∆̂ ∈ Cα(S), the left hand side can be lower bounded by

1

n
‖X∆̂‖22 ≥ κ‖∆̂‖22,

using the restricted eigenvalue condition. To check why ∆̂ ∈ Cα(S), note that the condition
‖θ̂‖1 ≤ ‖θ∗‖1 tells us that ∆̂ ∈ C(S) ⊆ C3(S).

The right hand side can be upper bounded by viewing the scalar w>X∆̂ as the product
of the vectors w>X and ∆̂:

2

n
w>X∆̂ ≤ 2

n
‖X>w‖∞ · ‖‖̂1.

Since ∆̂ ∈ C(S), we can efficiently bound the 1-norm in terms of the 2-norm:

‖∆̂‖1 = ‖∆̂Sc‖1 + ‖∆̂S‖1 ≤ 2‖∆̂S‖1 ≤ 2
√
s‖∆̂S‖2 ≤ 2

√
s‖∆̂‖2.

Using this in our inequality and dividing by κ on both sides gives

‖∆̂‖2‖ ≤
4
√
s

κ

∥∥∥∥X>wn
∥∥∥∥
∞
.
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Remark 1.4. If instead of bounding by ‖X>w‖∞ · ‖‖̂1, we try to bound by ‖X>w‖2 · ‖‖̂2,
then we get ‖∆̂‖2 ≤ 2

κ‖X
>w/n‖2 ∼

√
d
n . This is worse than the rate

√
log d
n .

The proof of (c) follows the same lines:

Proof. The error-constraint formulation

θ̂ = arg min
θ
{‖θ‖1} s.t.

1

2n
‖y −Xθ‖22 ≤ b2.

gives (using y −Xθ̂ = w −X∆̂).{
‖θ̂‖1 ≤ ‖θ∗‖1,
1
2n‖w +X∆̂‖2 ≤ 1

2n‖w‖
2
@ +

(
b2 − 1

2n‖w‖
2
2

)
The algebra proceeds the same as for (b), but we have to keep track of the additive term

2√
κ

√
b2 − ‖w‖

2
2

n .

The proof of (a) has slightly different reasoning:

Proof. We first show that when λn ≥ 2‖X>w
n ‖∞, we have ∆̂ ∈ C3(S). By optimality, we

have
1

2n
‖w +X∆̂‖22 + λn‖θ∗ + ∆̂‖1 ≤

1

2n
‖w‖22 + λn‖θ∗‖1.

This gives us the Lagrangian basic inequality

1

2n
‖X∆̂‖22 ≤

w>X>∆̂

n
+ λn(‖θ∗‖1 − ‖θ∗ + ∆̂‖1)

We can upper bound the right hand side by

≤
∥∥∥∥X>wn

∥∥∥∥
∞
‖∆̂‖1 + λn(‖θ∗S‖1 − ‖θ∗S + ∆̂S‖1 − ‖∆̂Sc‖1)

≤
∥∥∥∥X>wn

∥∥∥∥
∞
‖∆̂‖1 + λn(‖∆̂S‖1 − ‖∆̂Sc‖1)

≤ λn
2

(3‖∆̂S‖1 − ‖∆̂Sc‖1.

This upper bound must be nonnegative, so

‖∆̂Sc‖1 ≤ 3‖∆̂S‖1,

which means that ∆̂ ∈ C3(S). Now, by the RE condition and this bound we have shown,

κ

2
‖∆̂‖22 ≤

λn
2

(3‖∆̂S‖1 − ‖∆̂Sc‖1)
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≤ λn
2

3
√
s‖∆̂‖2.

Canceling a factor of ‖∆̂‖2 on both sides, we get ‖∆̂‖2 ≤ 3λn
κ

√
s.

Next time, we will show that the RE condition is satisfied with high probability for
Gaussian random matrices.
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